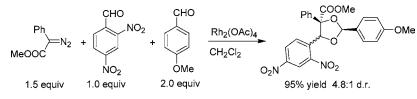
Highly Chemoselective 2,4,5-Triaryl-1,3-dioxolane Formation from Intermolecular 1,3-Dipolar Addition of Carbonyl Ylide with Aryl Aldehydes

Chong-Dao Lu, Zhi-Yong Chen, Hui Liu, Wen-Hao Hu,* and Ai-Qiao Mi

Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 & Graduate School of the Chinese Academy of Sciences, Beijing, China

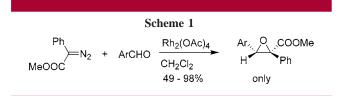

huwh@cioc.ac.cn

ORGANIC LETTERS

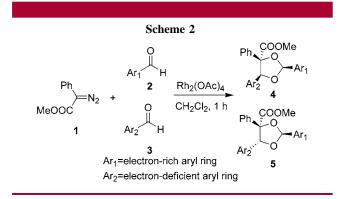
2004Vol. 6, No. 18 3071-3074

Received June 6, 2004

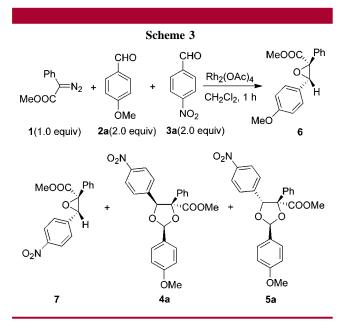
Rhodium(II) acetate catalyzed 1,3-dipolar cycloaddition of methyl phenyldiazoacetate with a mixture of electron-rich and electron-deficient aryl aldehydes gave 1,3-dioxolanes in high yield with excellent chemoselectivity.

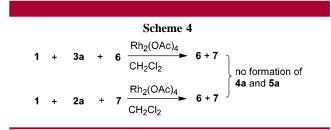

The catalytic generation of carbonyl ylides from diazo compounds and related reactions continue to receive a great deal of attention.¹ Among the carbonyl ylide reactions, the 1,3-dipolar cycloaddition of a carbonyl ylide^{1,2} with a suitable dipolarophile such as an alkene or alkyne forming highly substituted heterocycles is the most general reaction. In particular, intramolecular 1,3-dipolar addition reactions have been used to prepare complex synthetic targets by Padwa and others.³ In contrast, the intermolecular reactions with aldehydes or ketones have received limited attention,⁴ and most of them led to 1,3-dioxolanes.^{4a,c,d,i} Recently, the Doyle⁵ and Davies⁶ groups, respectively, reported stereospecific epoxide formation from rhodium acetate catalyzed diazo decomposition of aryldiazoacetate with aldehydes or aryl ketones. Later, a similar epoxidation process was used to prepare spiro-indolooxiranes with cyclic diazoamides by the Muthusamy group.⁷

As Doyle and Davies reported (Scheme 1), stereospecific ring closure of methyl phenyldiazoacetate-derived carbonyl ylides gave (Z)-epoxides as the only products in high yield without any formation of 1,3-dioxolane. To our surprise, when the reaction was performed in the presence of a mixture of an electron-rich and an electron-deficient aldehyde (2 and 3), 1,3-dipolar cycloaddition occurred to produce 1,3-


⁽¹⁾ Padwa, A.; Hornbuckle, S. Chem. Rev. 1991, 91, 263-309.

⁽²⁾ Reviews: (a) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley-Interscience: New York, 1984. (b) Doyle, M. P. Chem. Rev. 1986, 86, 919–939. (c) Doyle, M. P.; Forbes, D. C. *Chem. Rev.* **1998**, 98, 911– 936. (d) Doyle, M. P.; McKervey, M. A.; Ye, T. *Modern Catalytic Methods* for Organic Synthesis with Diazo Compounds; Wiley & Sons: New York, 1998. (e) Padwa, A.; Pearson, W. H. The Chemistry of Heterocyclic Compounds; Wiley & Sons: New York, 2002; Chapter 4. (f) Mehta, G.; Muthusamy, S. *Tetrahedron* **2002**, *58*, 9477–9504. (g) Hodgson, D. M.; Pierad. F. Y. T. M.; Stupple, P. A. *Chem. Soc. Rev.* **2001**, *30*, 50–61.


^{(3) (}a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223-269. (b) Padwa, A. Top. Curr. Chem. **1997**, 189, 121–158. (c) Padwa, A.; Hertzog, D. L.; Nadler, W. R. J. Org. Chem. **1994**, 59, 7072–7084. (d) Padwa, A.; Price, A. T. J. Org. Chem. 1995, 60, 6258-6259. (e) Marino, J. P.; Osterhout, M. H.; Padwa, A. J. Org. Chem. **1995**, 60, 2704–2713. (f) Curtis, E. A.; Sandanayaka, V. P.; Padwa, A. Tetrahedron Lett. **1995**, 36, 1989-1992. (g) Padwa, A.; Brodney, M. A.; Marino, J. P., Jr.; Sheehan, S. M. J. Org. Chem. 1997, 62, 78-87. (h) Padwa, A.; Curtis, E. A.; Sandanayaka, V. P. J. Org. Chem. 1997, 62, 1317-1325. (i) Padwa, A.; Harring, S. R.; Semones, M. A. J. Org. Chem. 1998, 63, 44-54. (j) Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556-565. (k) Padwa, A.; Precedo, L.; Semones, M. A. J. Org. Chem. 1999, 64, 4079-4088. (1) Kissel, W. S.; Padwa, A. Tetrahedron Lett. 1999, 40, 4003-4006.



dioxolanes as major products. Notably, only two diastereomers out of 16 possible dioxolanes were formed (Scheme 2). None of the dioxolanes derived from the diazo compound 1 with two of the same aldehydes was observed. To the best of our knowledge, this is the first example of such an intermolecular "cross" 1,3-dipolar cycloaddition reaction, in which a carbonyl ylide derived from one aldehyde selectively reacts with another aldehyde.

The first indication of this reaction occurred in the Rh₂-(OAc)₄- catalyzed reaction of methyl phenyldiazoacetate with 2 equiv each of *p*-anisaldehyde and *p*-nitrobenzaldehyde to give 50% isolated yield of the dioxolanes **4a** and **5a** with 45:55 dr (Scheme 3). Epoxides **6** and **7** were formed in 13% and 11% yield, respectively, based on ¹H NMR quantitation of the crude product. The stereochemistry is reverse from the epoxidation products **6** and **7**, in which two aryl groups

are trans to each other.^{5,6} A control reaction of diazo 1 with aldehyde 3a (2a) in the presence of epoxide 6 (7) resulted in no dioxolane formation indicating that the 4 and 5 were not formed from ring opening of the corresponding epoxides (Scheme 4).

Encouraged by the initial results, we further examined the process with the combination of various electron-rich and electron-deficient aryl aldehydes. As shown in Table 1,

Table 1. Reaction of Methyl Phenyldiazoacetate with Different

 Electron-Rich and Electron-Deficient Aldehydes (Scheme 2)^a

entry	Ar_1	Ar ₂	product	yield ^b (%)	dr ^c (4/5)
	- M. OB	- NO Dh		50	45.55
1^d	<i>p</i> -MeOPh	<i>p</i> -NO ₂ Ph	4a + 5a	50	45:55
2^e	<i>p</i> -MeOPh	2,4-(NO ₂) ₂ Ph	4b + 5b	95	81:19
3^{e}	<i>o</i> -MeOPh	2,4-(NO ₂) ₂ Ph	4c + 5c	90	83:17
4^{e}	piperonyl	2,4-(NO ₂) ₂ Ph	4d + 5d	94	81:19
5^e	<i>m</i> -MePh	2,4-(NO ₂) ₂ Ph	4e + 5e	91	84:16
6^e	Ph	2,4-(NO ₂) ₂ Ph	4f + 5f	85	85:15
7^e	2,4-(MeO) ₂ Ph	<i>p</i> -NO ₂ Ph	4g + 5g	78	43:57
8^d	2,4-(MeO) ₂ Ph	<i>p</i> -NO ₂ Ph	4g + 5g	61	43:57
9^d	2,4,6-(MeO) ₃ Ph	<i>p</i> -NO ₂ Ph	4h + 5h	74	45:55
10^d	2,4,6-(MeO) ₃ Ph	o-NO ₂ Ph	4i + 5i	65	60:40
11^d	2,4,6-(MeO) ₃ Ph	$Ar_2CHO =$	4j + 5j	50	43:57
		o-phthalaldehyde			
12^d	2,4,6-(MeO) ₃ Ph	<i>p</i> -CF ₃ Ph	4k + 5k	63	32:68
13^d	2,4,6-(MeO) ₃ Ph	p-CNPh	4l + 5l	71	40:60
14^d	2,4,6-(MeO) ₃ Ph	-	4m+ 5m	80	77:23

^{*a*} Reactions were performed in CH₂Cl₂ under reflux with 1.0 mol % of rhodium(II) acetate. ^{*b*} Isolated yield of products (4 + 5) after column chromatography purification. ^{*c*} Ratios were determined by ¹H NMR of crude reaction mixtures. ^{*d*} Substrate ratio 1/2/3 = 1:2:2 mmol. ^{*e*} Substrate ratio 1/2/3 = 1.5:2.0:1.0 mmol.

"cross" 1,3-dioxolanes were the major products, and the electron-deficient aldehydes served as dipolarophiles at all times. The reaction of a more electron-deficient dipolarophile with a carbonyl ylide derived from an electron-rich aryl

^{(4) (}a) de March, P.; Huisgen, R. J. Am. Chem. Soc. 1982, 104, 4952.
(b) Huisgen, R.; de March, P. J. Am. Chem. Soc. 1982, 104, 4953-4954.
(c) Alt, M.; Maas, G. Tetrahedron 1994, 50, 7435-7444. (d) Doyle, M.
P.; Forbes, D. C.; Protopopova, M. N.; Stanley, S. A.; Vasbinder, M. M.; Xavier, K. R. J. Org. Chem. 1997, 62, 7210-7215. (e) Wenkert, E., Khatuya, H. Tetrahedron Lett. 1999, 40, 5439-5442. (f) Hamaguchi, M.; Matsubara, H.; Nagai, T. J. Org. Chem. 2001, 66, 5395-5404. (g) Johnson, T.; Cheshire, D. R.; Stocks, M. J.; Thurston, V. T. Synlett 2001, 646-648.
(h) Skaggs, A. J.; Lin, E. Y.; Jamison, T. F. Org. Lett. 2002, 4, 2277-2280 (i) Jiang, B.; Zhang, X.; Luo, Z. Org. Lett. 2002, 4, 2453-2455. (g) Nair, V.; Mathai, S.; Nair, S. M.; Rath, N. P. Tetrahedron Lett. 2003, 44, 640-8409. (h) Nair, V.; Mathai, S.; Varma, R. L.; J. Org. Chem. 2004, 69, 1413-1414.

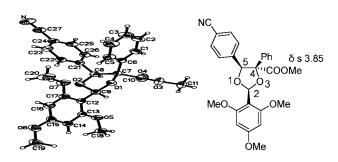


Figure 1. ORTEP representation of the crystal structure of dioxolane 4l.

aldehyde gave dioxolanes in higher yield. For example, the combination of 2,4-dinitrobenzaldehyde and *p*-anisaldehyde provided the 1,3-dioxolane in 95% isolated yield favoring **4b** in 81:19 selectivity (entry 2). Benzaldehyde could serve as an "electron-rich" aldehyde to give successful "cross" dioxolanation in high yield (entry 6), and *o*-phthalaldehyde could serve as an "electron-deficient" aldehyde to conduct the 1,3-dipolar cycloaddition with moderate yield (entry 11).

The stereochemistry of stereoisomers **41** and **51** was confirmed by their X-ray structures. The perspective views of **41** and **51** clearly exhibit the cis relationship between the 2-C and the 4-C aryl rings in both isomers (Figures 1 and 2). The ¹H NMR chemical shift (δ) of 4-COOMe in **51** was

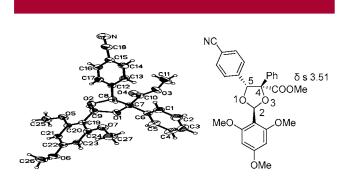
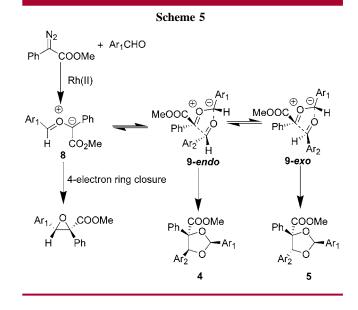



Figure 2. ORTEP representation of the crystal structure of dioxolane 51.

shifted to more upfield due to obvious shield from the 5-C aryl group, as can be seen in Figure 2. This diagnostic peak was used to assign the stereochemistry for other analogues.

It is interesting that the diastereoselectivity at 5-C highly depends on the electronic feature of the dipolarophile aldehyde and was less dependent on the electron-rich one. 2-Nitrobenzaldehyde and 2,4-dinitrobenzaldehyde continued to give the diastereomer favoring **4**, while other less electron-deficient aldehydes favored **5**. 2,4-Dinitrobenzaldehyde af-

forded high diastereoisomeric ratios in all cases.⁸ The steric effect of ortho substitution on electron-rich aldehydes did not noticeably affect the diastereoselectivity of the products (4/5) (entries 2 and 3). Attempts to achieve dioxolanation from two electron-deficient aldehydes such as 2,4-dinitrobenzaldehyde with 4-nitrobenzaldehyde were unsuccessful, and epoxides were found to be major products (epoxides/ dioxolanes > 10:1 from crude ¹H NMR). Complex mixtures were obtained when aliphatic aldehydes were employed as electron-rich aldehydes in this reaction.

Mechanistically, the formation of the dioxolane 4 and 5 is considered to be a dipolar cycloaddition in which the carbonyl ylide 8 generated from the carbenoid with an electron-rich aldehyde was chemospecifically trapped by another electron-deficient aldehyde (Scheme 5). The fixed *cis*-relationship between 2-C Ar₁ and 4-C Ph supports the concert process. The reason accounts for the diastereoselectivity giving different ratio of 4 to 5 is unclear. The issue deserves further investigation.

To address if ylide **8** is metal associated, the reaction of diazo compound **1** with 2,4,6-trimethoxybenzaldehyde and *p*-nitrobenzaldehyde (entry 9) was carried out with $Rh_2(cap)_4$ and $Rh_2(S$ -DOSP)₄ individually. Preliminary results support metal-free ylide intermediate in this case. Products (**4h** + **5h**) were obtained in 41% and 45% yield, respectively, with the same ratio of **4h/5h** = 45:55 with both catalysts. The ratio was also the same as using $Rh_2(OAc)_4$ (entry 9). In addition, no enantioselectivity was observed in both **4h** and **5h** with the chiral catalyst $Rh_2(S$ -DOSP)₄. The preferred ylide conformation **8** is evidenced by the stereospecific formation of (*Z*)-epoxide through a 4-electron conrotatory ring closure.

In conclusion, we report a first example of chemospecific dioxolane formation from "cross" 1,3-dipolar cycloaddition of methyl phenyldiazoacetate with an electron-rich and an

⁽⁵⁾ Doyle, M. P.; Hu, W.; Timmons, D. J. Org. Lett. 2001, 3, 933–935.
(6) Davies, H. M. L.; DeMeese, J. Tetrahedron Lett. 2001, 42, 6803–6805

⁽⁷⁾ Muthusamy, S.; Gunanathan, C.; Nethaji, M. Synlett 2004, 639–642.

⁽⁸⁾ Even though 2,4-dinitrobenzaldehyde served as a good dipolarophile, reaction of diazo 1 with 2,4-dinitrobenzaldehyde alone still gave only epoxide product without trace amounts of dioxolane; see the Supporting Information.

electron-deficient aldehyde in the presence of dirhodium acetate catalyst. Carbonyl ylide generated from the carbenoid with the electron-rich aldehyde selectively reacts with the electron-deficient aldehyde to give 2,4,5-triaryl-1,3-dioxo-lanes in moderate to high yields.

Acknowledgment. We are grateful for financial support from the Chinese Academy of Sciences and the National Science Foundation of China (Grant No. 20202011). We thank Prof. Kai-Bei Yu of Chengdu Institute of Organic Chemistry for X-ray measurements.

Supporting Information Available: Experimental procedures and characterization data of all new compounds, as well as X-ray crystallographic data for **4b**, **4l**, and **5l** in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0489494